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1. INTRODUCTION 

Home delivery by drones is being promoted and researched by a growing number of firms as a 
possible alternative or complement to traditional delivery by trucks. Though many of the details 
about drone delivery remain uncertain, recent reports suggest that drones might make small 
package deliveries for only $1 (Soper 2015, Keeney 2015). Further interest stems from reports 
that 86% of Amazon.com’s orders are less than 5 lbs (ideal for drone delivery) (Rose 2013) and 
that 82% of customers are willing to pay for drone delivery (Snow 2014). Thus, drones provide 
new opportunities to improve home delivery services, and therefore research is required on how 
best to deploy drones for home delivery.  

Proposals for drone delivery vary widely, with drones being used independently or in 
conjunction with delivery by trucks. In this report, we address hybrid truck-drone delivery, 
where drones are autonomous vehicles (i.e., unmanned) that make deliveries on their own, with 
each drone departing from and returning to a truck. While our main focus is on aerial drones that 
generally have a small payload capacity (e.g., 5 lbs), our modeling can equally apply to ground-
based drones that can carry considerably larger loads (e.g., Pettitt 2015, Pymnts 2015).  

While widespread use of delivery drones requires overcoming a variety of economic, regulatory, 
and technological obstacles (Lee et al. 2016), there is a need for strategic analyses of truck-drone 
delivery systems to help identify promising delivery system designs. Note that our research is 
oriented toward home delivery systems, not military or surveillance applications, though there 
are some obvious similarities. There are also many related healthcare applications (e.g., Markoff 
2016, Thiels et al. 2015, Francisco 2016), but our focus is on delivery of small parcels to homes 
and businesses (i.e., “last-mile delivery” as currently done by UPS, FedEx, US Postal Service, 
etc.). Our research is based on operations such as the systems used by HorseFly (Workhorse 
2017), the partnership between Matternet and Mercedes-Benz (Sloat and Kopplin 2016, 
Matternet 2017), and UPS (UPS 2017). In this report, our focus is on minimizing expected costs 
for deliveries across a region, such as by replacing long (e.g., eight-hour) truck-only delivery 
routes by hybrid truck-drone routes. 

The fundamental research questions we address are as follows:  

• How can hybrid truck-drone routes best be used to serve a region? 
• How do hybrid truck-drone routes compare with truck-only delivery? 

Because many different types of delivery drones continue to be proposed, our flexible modeling 
framework allows us to analyze a range of drone types and delivery strategies. As an illustration, 
Figure 1 (left) shows a hybrid truck-drone delivery route, where the truck and drone alternate 
deliveries while traveling through the service region.  
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Figure 1. Hybrid truck-drone delivery with alternating deliveries (left) and multiple drone 

deliveries per truck delivery (right) 

The truck route is shown with rectilinear travel (L1 metric) between the truck deliveries, 
indicated by squares, while the drone uses straight-line travel (L2 metric) to deliver to the 
customers, indicated by circles. Figure 1 (right) illustrates hybrid truck-drone delivery, where a 
truck route has three delivery stops, from each of which are four single-stop drone routes. 

For strategic analyses, we formulated continuous approximation (CA) models of truck-drone 
delivery, where trucks transport drones from a depot to the vicinity of customers, and then both 
drones and trucks make deliveries simultaneously, with the drones launched from and returning 
to the truck (to pick up more items for delivery). We also modeled truck-only delivery on multi-
stop tours for comparison. In this work, we considered only one-stop drone routes, where each 
drone carries a single item for delivery. We employed reasonable parameter values and operating 
characteristics in the models to evaluate a range of delivery environments (e.g., from very rural 
to suburban regions) and highlighted key areas of importance for beneficial drone operations. 
Our focus was on logistical and operational aspects, and not on the (important) legal, regulatory, 
and technological issues, including customer acceptance (Lee et al. 2016, Lotz 2105). 

The remainder of the report is organized as follows. Chapter 2 presents a review of relevant 
literature on truck-drone delivery modeling. Chapter 3 provides the basic continuous 
approximation model formulations. Chapter 4 describes the development of reasonable values 
for drone operating costs. Chapter 5 provides the results of several analyses for a range of 
settings, and Chapter 6 offers conclusions. 
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2. LITERATURE REVIEW 

Researchers have begun to analyze truck-drone delivery systems by extending traditional 
discrete Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) models and 
solution methods. Perhaps the earliest directly relevant research is Lin (2008, 2011), which 
considers “transportable delivery resources” carried on trucks. In these studies, foot couriers 
were the transportable resource, and both the couriers and trucks could make deliveries, with 
trucks travelling much faster (20 km/h versus 5 km/h for foot couriers). These studies contrast 
with the recent research on truck-drone delivery, which has largely been directed at aerial drones 
that are typically much faster than trucks.  

Murray and Chu (2015) analyze a TSP variant with a single truck and single drone, called the 
flying sidekick TSP (FSTSP), where the drone and truck start and end at a depot, the drone 
travels on the truck, and the drone can make deliveries on its own. Each drone delivery involves 
a single stop, with the drone departing from and returning to the truck at sequential truck 
delivery stops. The objective is to minimize the total time for both the truck and drone to return 
to the depot, which includes travel time, launch and recovery time for the drone, and waiting 
time for the drone or truck at the stop where recovery occurs. Murray and Chu (2015) also 
consider a parallel version of the problem where the truck and drone serve different sets of 
customers concurrently, with the drone traveling back and forth between the depot and customers 
while a truck visits other customers. For both formulations, Murray and Chu (2015) provide 
simple construction and improvement heuristics for solution.  

Ponza (2016) considers the same problem and presents an improved mathematical formulation 
and a simulated annealing solution approach. Ha et al. (2015) consider a very similar problem, 
though with a different name (TSP-D). In this problem, once the drone is launched from either 
the depot or the truck (at a customer stop), it either returns to the truck at the next stop of the 
truck or it returns to the depot. Ha et al. (2015) optimize an objective that may be the number of 
drone trips, travel time, or travel distance, and solutions are presented for cluster first–route 
second and route first–cluster second heuristics. Ha et al. (2016) consider a similar setting, but 
with the objective of minimizing the sum of the truck and drone costs, and present two heuristic 
solution methods based on greedy randomized adaptive search procedure (GRASP) and 
modification of an optimal TSP tour.  

Agatz et al. (2015) consider a variant of the truck-drone delivery problem where the drone may 
launch and recover at the same truck stop, and the authors provide solutions from a route first–
cluster second heuristic. Ferrandez et al. (2016) analyze a different model where the truck 
follows a TSP tour, and from each truck stop one or more drones can perform multiple single-
stop deliveries. Thus, each truck stop is essentially a hub for multiple drone deliveries. The 
solution approach uses K-means clustering to find the truck stops and a genetic algorithm for 
finding the truck route. Dorling et al. (2016) use a model for drone energy consumption to 
develop cost and time minimization models for multi-stop drone deliveries from a depot. A 
different perspective is explored by Wang et al. (2016), which provides worst-case analyses for 
several truck-drone delivery settings, including the use of multiple truck-drone pairs. On a 
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related theme, Hong et al. (2015) present a model for locating drone recharging stations and 
routing drones among these stations.  

In contrast to the discrete TSP-based optimization models described above, our research 
developed strategic models for the design of truck-drone delivery systems using continuous 
approximation (CA) modeling techniques, where the demand for deliveries is treated as a 
continuous spatial density over a service region. For background and applications of CA models, 
see Campbell (1993), Langevin et al. (1996), and Daganzo et al. (2012). Carlsson and Song 
(2017) use CA models for an asymptotic analysis of a truck-drone delivery system where all 
deliveries are made by drones that are launched and recovered at trucks as the trucks make a tour 
through the service region. The objective of the analysis was to minimize the time of the last 
delivery, and costs were not modeled.  

In our research, we developed mathematical models for truck-drone delivery using CA 
techniques by extending the swath model pioneered by Daganzo (1984a). We formulated 
mathematical expressions for the expected travel cost (and time) for the trucks and drones based 
on the strategy employed for deploying the trucks and drones, the fundamental parameters of the 
problem setting (e.g., spatial density of customers [demand] and the fraction of demand served 
by drones), and the operating characteristics of the trucks and drones (e.g., operating costs, stop 
costs, and speeds). The models allow different travel metrics because truck travel is via roads 
while aerial drones may travel (more or less) in straight lines. In contrast to Carlsson and Song 
(2017), our models allow comparison of expected costs for truck-drone and truck-only delivery 
and an evaluation of the sensitivity of results to operating costs and the delivery density. 
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3. CONTINUOUS APPROXIMATION MODELS 

This chapter provides a derivation of the continuous approximation truck-drone delivery model. 
The fundamental idea is to extend the “strip” modeling strategy for approximating the distance of 
vehicle routes from Daganzo (1984a) to allow the truck to launch and recover drones at truck 
stops (customers). For modeling purposes, let the service region be a compact region of area A 
where delivery stops are randomly and independently distributed in the region with density δ. 

3.1 Truck-Only Delivery  

Consider a truck traveling using the L1 metric along the length of a swath of width w, like that 
shown in Figure 2, and visiting all customers in (vertical) order along the swath.  

 
w 

Figure 2. Four truck stops along a swath of width w 

The expected horizontal distance between adjacent stops is w/3, and the expected vertical 
distance between adjacent stops is 1/wδ. If a truck is to visit all stops, combining the expected 
horizontal and vertical truck travel distance between two adjacent stops gives an expected total 
truck travel (L1) distance per stop of  

𝑤𝑤
3

+ 1
𝛿𝛿𝑤𝑤

 .  (1) 

The optimal swath width to minimize the expected truck-only travel distance is 𝑤𝑤𝑡𝑡𝑡𝑡
∗ = �3

𝛿𝛿
, and 

the minimal expected truck travel distance would be 2� 1
3𝛿𝛿

.  

The model above is appropriate for a truck that leaves the depot and travels along the swath 
making deliveries, as in Figure 3 (left), where the entire service area can be served with five 
routes from a centrally located depot, with each route serving a wedge-shaped zone.  
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Figure 3. No linehaul travel when few routes cover the service region (left) and linehaul 
travel when many routes are in the service region (right) 

However, when each route serves only a small portion of the service region, then the total 
expected travel distance should include a “linehaul” portion from the depot to the zone where the 
deliveries on a route begin. Figure 3 (right) shows the start of two of the many routes in the 
service region when each route serves only a small part of the region and linehaul travel is 
needed from the depot to the zone. To formulate the expected linehaul travel, suppose the truck 
has a delivery capacity of serving 𝑚𝑚𝑡𝑡 stops. Let the depot be centrally located in a compact 
service region of area A, and let 𝜌𝜌 be the expected distance from the depot to a delivery stop in a 
zone, where zones are reasonably compact. For a circular service region, 𝜌𝜌 = 2

3�𝑃𝑃/𝜋𝜋, and 
similar values hold for other compact shapes of the service region (see Eilon et al. 1971). 

However, the distance (and cost) can be reduced by using linehaul travel only to the edge of the 
zone and defining a zone shape that is elongated in the direction of the depot (see Daganzo 
1984b). Suppose we use rectangular zones of length 𝑙𝑙 and a width equal to twice the swath 
width 𝑤𝑤. Figure 4 shows an example where the linehaul travel to the edge of the zone is shown 
with a dashed line.  

 
Figure 4. An elongated zone reduces linehaul travel 

Because the zone has a width of 2w, the delivery truck travels down one side and back the other 
side. The expected linehaul distance to the edge of the zone can be written 

depot 
𝑙𝑙 

2𝑤𝑤 
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𝜌𝜌 − 𝑙𝑙
2
 = 𝜌𝜌 − 𝑚𝑚𝑡𝑡

4𝑤𝑤𝛿𝛿
 , (2) 

using 𝑙𝑙 × 2𝑤𝑤 = 𝑚𝑚𝑡𝑡
𝛿𝛿

 , because there are 𝑚𝑚𝑡𝑡 stops in the zone. The expected round trip linehaul 
distance per delivery is then 

2
𝑚𝑚𝑡𝑡
�𝜌𝜌 − 𝑙𝑙

2
� = 2𝜌𝜌

𝑚𝑚𝑡𝑡
− 1

2𝑤𝑤𝛿𝛿
 ,  (3) 

which shows that the savings per delivery from not traveling to the center of the zone are 
effectively one-half of the expected horizontal travel distance � 1

2𝑤𝑤𝛿𝛿
�; see equation (1). 

Adding the round trip linehaul transportation to equation (1) gives a total truck travel distance of 
2𝜌𝜌
𝑚𝑚𝑡𝑡𝑡𝑡

+ 𝑤𝑤
3

+ 1
2𝛿𝛿𝑤𝑤

, for which the optimal swath width is 𝑤𝑤𝑡𝑡𝑡𝑡
∗ = � 3

2𝛿𝛿
. Using this optimal swath width 

gives a total expected cost per stop for truck-only delivery: 

𝐸𝐸𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑡𝑡 �
2𝜌𝜌
𝑚𝑚𝑡𝑡𝑡𝑡

+ √2
√3𝛿𝛿

� + 𝑠𝑠𝑡𝑡 .  (4) 

In the remainder of this report, we will focus on the case with linehaul transportation, which is 
used when many routes are used to serve a region. 

3.2 Hybrid Truck-Drone Delivery 

Now suppose that drones can also visit customers to make deliveries in place of the truck, and 
the drones are launched and recovered by the truck. Figure 5 (left) shows the truck and drone 
alternating deliveries over two “cycles” (moving from bottom to top), where the drone travel is 
indicated by dashed lines and the truck travel, indicated by solid lines, has arrows showing 
direction of travel.   
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Figure 5. Truck-drone delivery for n = 1 (left), n = 3 (center), and n = 2/3 (right) 

If drone travel is via Euclidean distance (the L2 metric) and the drone launches and is recovered 
at the truck delivery customers adjacent to the drone delivery customers (in the vertical 
direction), then the expected drone travel distance per point is 

��𝑤𝑤
3
�
2

+ � 1
𝛿𝛿𝑤𝑤
�
2
.  (5) 

To generalize to situations where the drone and truck do not simply alternate deliveries, we 
modeled the truck-drone travel as a connected series of cycles, with n representing the ratio of 
the number of drone deliveries in one cycle to the number of truck deliveries in one cycle. Then 
we considered two cases: n > 1, where there are multiple drone stops per truck stop, and 0 < n ≤ 
1, where the drone makes the same (n = 1) or fewer stops than the truck per cycle.  

3.3 n > 1: Multiple Drone Deliveries per Truck Delivery 

For n ≥ 1, there are more drone deliveries than truck deliveries in a cycle (or the same number of 
truck and drone deliveries for n > 1). For n > 1, there is a single drone trip departure and return at 
each truck delivery, as in Figure 5 (left); however, there are several operational possibilities 
associated with n > 1, including having multiple drones per truck each making a single delivery 
per cycle, having a single drone per truck making multiple deliveries per cycle, or some 
combination of these. Our interest here is exploring the benefits of multiple drones per truck, so 
we considered a situation where n drones launch from the truck at each truck delivery stop; the 
drones make one delivery each, visit the next n stops along the strip; and then recover all the 
drones at the delivery truck’s n+1st stop. Thus, there is a single truck delivery in each cycle, and 
n is the number of drones per truck as well as the ratio of drone deliveries to truck deliveries per 

w w w 
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cycle. Figure 5 (center) illustrates a case where n = 3. Other options with n > 1, such as having a 
single drone launch and return to the same truck stop repeatedly, are an area of ongoing research.  

For a truck-drone delivery with n ≥ 1, the expected horizontal distance between adjacent truck 
deliveries is w/3 and the expected vertical truck travel distance between adjacent truck deliveries 
is (n+1)/wδ. The linehaul travel for truck-drone delivery to the nearest edge of a rectangular zone 
can be formulated as before for truck-only travel as  

2
𝑚𝑚𝑡𝑡𝑡𝑡

�𝜌𝜌 − 𝑙𝑙
2
� = 2𝜌𝜌

𝑚𝑚𝑡𝑡𝑡𝑡
− 1

2𝑤𝑤𝛿𝛿
 ,  (6) 

where mtd is the number of deliveries for the truck-drone route (in a zone of width 2w). 
Combining linehaul travel with the expected horizontal and vertical truck travel distance between 
two adjacent deliveries gives an expected truck travel distance per delivery of � 2𝜌𝜌

𝑚𝑚𝑡𝑡𝑡𝑡
+ 𝑤𝑤

3
1

𝑛𝑛+1
+

1
2𝛿𝛿𝑤𝑤

�. Considering the truck travel alone, the optimal swath width is given by   

𝑤𝑤𝑡𝑡
∗ = �𝑛𝑛+1

2
�3
𝛿𝛿
.   (7) 

With drone travel via Euclidean distance (the L2 metric) and all 𝑛𝑛 drones launched from a single 
truck stop and recovered at the n+1st truck stop, the total expected drone travel distance for the n 
delivery stops in a cycle is  

∑ ���𝑤𝑤
3
�
2

+ � 𝑖𝑖
𝛿𝛿𝑤𝑤
�
2

+ ��𝑤𝑤
3
�
2

+ �𝑛𝑛+1−𝑖𝑖
𝛿𝛿𝑤𝑤

�
2
�𝑛𝑛

𝑖𝑖=1 .  (8) 

In equation (8), we can approximate the distance for a drone delivery using the distance for the 
average drone delivery, which is halfway between the truck stops, or a vertical distance of 𝑛𝑛+1

2
1
𝛿𝛿𝑤𝑤

 
from each truck stop. This is a very good approximation (errors < 2%) unless the drone delivery 
is very close to the truck delivery. Replacing each square root in the summation by distance 

��𝑤𝑤
3
�
2

+ �𝑛𝑛+1
2𝛿𝛿𝑤𝑤

�
2
 yields an expected approximate drone distance per delivery of  

2𝑛𝑛
𝑛𝑛+1

��𝑤𝑤
3
�
2

+ �𝑛𝑛+1
2𝛿𝛿𝑤𝑤

�
2
. (9) 

For n = 1, this expression is exact because the expected drone distance per delivery is 

��𝑤𝑤
3
�
2

+ � 1
𝛿𝛿𝑤𝑤
�
2
. The optimal swath width that minimizes the drone travel distance (equation (9)) 

is then  
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𝑤𝑤𝑑𝑑
∗ = �𝑛𝑛+1

2
�3
𝛿𝛿
, (10) 

which is the same as for the truck travel alone.  

Let cd be the drone variable cost per unit distance and sd be the marginal cost for drone delivery 
(including launch and recovery costs) relative to truck delivery. Thus, the delivery stop cost for a 
drone is given by st + sd, where a negative (positive) value for sd is the per delivery savings 
(excess costs) for making a delivery with a drone. (If truck and drone delivery costs are equal, 
then sd = 0.) The expected total cost per delivery for hybrid truck-drone delivery with n ≥ 1, 
including truck travel, drone travel, and the stop cost, can then be approximated as  

𝐸𝐸𝑡𝑡𝑑𝑑(𝑛𝑛,𝑤𝑤) = 𝑐𝑐𝑡𝑡 �
1

𝑛𝑛+1
𝑤𝑤
3

+ 1
𝛿𝛿𝑤𝑤
�  + 𝑐𝑐𝑑𝑑

2𝑛𝑛
𝑛𝑛+1

��𝑤𝑤
3
�
2

+ �𝑛𝑛+1
2𝛿𝛿𝑤𝑤

�
2

+ 𝑐𝑐𝑡𝑡
2𝜌𝜌
𝑚𝑚𝑡𝑡𝑡𝑡

+ 𝑛𝑛
𝑛𝑛+1

𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑡𝑡. (11) 

For the optimal swath width 𝑤𝑤𝑡𝑡𝑑𝑑
∗ = �𝑛𝑛+1

2
�3
𝛿𝛿
, the expected cost is  

𝐸𝐸𝑡𝑡𝑑𝑑(𝑛𝑛,𝑤𝑤𝑡𝑡𝑑𝑑
∗ ) = 𝑐𝑐𝑡𝑡 �

1
𝑛𝑛+1

𝑤𝑤
3

+ 1
𝛿𝛿𝑤𝑤
�  + 𝑐𝑐𝑑𝑑

2𝑛𝑛
𝑛𝑛+1

��𝑤𝑤
3
�
2

+ �𝑛𝑛+1
2𝛿𝛿𝑤𝑤

�
2

+ 𝑐𝑐𝑡𝑡
2𝜌𝜌
𝑚𝑚𝑡𝑡𝑡𝑡

+ 𝑛𝑛
𝑛𝑛+1

𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑡𝑡 (12) 

=  𝑐𝑐𝑡𝑡�
2
3 

1+√2𝑛𝑛𝑐𝑐𝑠𝑠𝑐𝑐𝑡𝑡
√𝑛𝑛+1  �1

𝛿𝛿 + 𝑐𝑐𝑡𝑡
2𝜌𝜌
𝑚𝑚𝑡𝑡𝑡𝑡

+ 𝑛𝑛
𝑛𝑛+1

𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑡𝑡.  

We can write 

𝐸𝐸𝑡𝑡𝑑𝑑(𝑛𝑛,𝑤𝑤𝑡𝑡𝑑𝑑
∗ ) = 𝑐𝑐𝑡𝑡𝑘𝑘𝑡𝑡𝑑𝑑,𝑛𝑛≥1 �1

𝛿𝛿
+ 𝑐𝑐𝑡𝑡

2𝜌𝜌
𝑚𝑚𝑡𝑡𝑡𝑡

+ 𝑛𝑛
𝑛𝑛+1

𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑡𝑡,  (13) 

where the first term includes the parameter 𝑘𝑘𝑡𝑡𝑑𝑑,𝑛𝑛≥1 = �2
3

 
1+√2𝑛𝑛

𝑐𝑐𝑡𝑡
𝑐𝑐𝑡𝑡

√𝑛𝑛+1
  that depends only on the 

number of drones (n) and the cost ratio 𝑐𝑐𝑡𝑡
𝑐𝑐𝑡𝑡

 ; the second term depends on the expected distance 
from the depot to a delivery in the zone and the number of delivery stops; and the last two terms 
are the stop cost. 

3.4 0 < n ≤ 1: One Drone per Truck 

For n ≤ 1, we modeled the drone launching and returning to the truck at different customers 
because the drone makes the same (for n = 1) or fewer stops than the truck. Thus, we modeled 
travel along the swath such that the drone delivery stop is the first customer after the truck stop 
where the drone is launched, and the drone is recovered at the first customer (truck stop) 
immediately after the drone stop. (This is the same setup used in much of the discrete modeling 
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for truck-drone delivery noted earlier.) As an example, Figure 5 (right) shows n = 2
3
 , where the 

drone stays on the truck between the last two truck stops. The fraction of stops served by the 
drone is denoted 𝑓𝑓, and 𝑓𝑓 = 𝑛𝑛

𝑛𝑛+1
 (𝑓𝑓 = 2/5 in Figure 5(right)).  

For n ≤ 1, the expected truck horizontal travel distance per point in one cycle is 𝑤𝑤
3
�1 − 𝑛𝑛

𝑛𝑛+1
� =

𝑤𝑤
3

1
𝑛𝑛+1

, and the expected truck vertical travel distance per point in one cycle is 1
𝛿𝛿𝑤𝑤

 (the same as 
before because the trucks must pass all stops in the vertical direction). Thus, the expected total 
truck travel distance per point is  

𝑤𝑤
3

1
𝑛𝑛+1

+ 1
𝛿𝛿𝑤𝑤

.  (14) 

The optimal swath width to minimize the expected truck travel distance or time (assuming a 
constant truck speed) is 

𝑤𝑤𝑡𝑡
∗ = √𝑛𝑛 + 1�3

𝛿𝛿
.  (15) 

Because the fraction of stops made by the drone is 𝑛𝑛
𝑛𝑛+1

, the expected drone travel distance per 

point is 

2 𝑛𝑛
𝑛𝑛+1

��𝑤𝑤
3
�
2

+ � 1
𝛿𝛿𝑤𝑤
�
2

, (16) 

where the square root term provides the expected Euclidean distance for one leg of the drone 
trip. The optimal swath width to minimize the expected drone travel distance (or travel time 
assuming a constant drone speed) is the same as for using a truck alone and is given by 

𝑤𝑤𝑑𝑑
∗ = �3

𝛿𝛿
.  (17) 

We combine the truck and drone travel to model the expected total cost of the truck-drone route 
with n ≤ 1. Based on the expected distances (14) and (16), the total expected cost per delivery 
when n ≤ 1 is  

𝑐𝑐𝑡𝑡 �
𝑤𝑤
3

1
𝑛𝑛+1

+ 1
𝛿𝛿𝑤𝑤
�  + 2𝑐𝑐𝑑𝑑

𝑛𝑛
𝑛𝑛+1

��𝑤𝑤
3
�
2

+ � 1
𝛿𝛿𝑤𝑤
�
2

+ 𝑛𝑛
𝑛𝑛+1

𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑡𝑡.  (18) 

In terms of the fraction of stops made by drones 𝑓𝑓 = 𝑛𝑛
𝑛𝑛+1

, the total expected cost per stop is 
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𝑐𝑐𝑡𝑡 �
𝑤𝑤
3

(1 − 𝑓𝑓) + 1
𝛿𝛿𝑤𝑤
�  + 2𝑐𝑐𝑑𝑑𝑓𝑓��

𝑤𝑤
3
�
2

+ � 1
𝛿𝛿𝑤𝑤
�
2

+ 𝑓𝑓𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑡𝑡,  (19) 

which is linear in f for a fixed swath width. Thus, the optimal fraction of drone deliveries to 
minimize costs is either f = n = 0, i.e., using truck-only delivery and no drones, or f = 0.5 (when 
n = 1), i.e., using drones for half the deliveries (as much as possible). This latter case (using 
drones for half the deliveries) is preferred when the ratio of drone to truck operating costs per 
unit distance is small enough:  

𝑐𝑐𝑡𝑡
𝑐𝑐𝑡𝑡

<  
𝑤𝑤
3− 

𝑠𝑠𝑡𝑡
𝑐𝑐𝑡𝑡

2��𝑤𝑤3�
2
+� 1

𝛿𝛿𝑤𝑤�
2 . (20) 

The numerator of the expression on the right side of equation (20) is the expected horizontal 
truck travel distance between two stops minus the ratio of the marginal drone stop cost to the 
truck cost per mile. This equation shows how the desirability of using drones depends on their 
operating cost relative to trucks, the density of deliveries (𝛿𝛿), the magnitude of the marginal 
drone stop cost relative to the truck operating cost �𝑠𝑠𝑡𝑡

𝑐𝑐𝑡𝑡
�, and the design parameter w (width of the 

swath). 

The minimum expected total cost per stop is realized with the optimal swath width that 
minimizes expression (18), but this does not lend itself to a simple closed-form solution. 
However, because both the truck and drone components of the expected travel cost are convex, 
the optimal swath width w* will be between the values for using drones alone or trucks alone 
(equations (15) and (17)). Extensive numerical experimentation has shown that the nearly 
optimal swath width is given by the expression 

𝑤𝑤𝑡𝑡𝑑𝑑,𝑛𝑛≤1
∗ ≅

�√𝑛𝑛+1 +2
𝑐𝑐𝑡𝑡
𝑐𝑐𝑡𝑡
�

1+2
𝑐𝑐𝑡𝑡
𝑐𝑐𝑡𝑡

�3
𝛿𝛿

= 𝑘𝑘1�
3
𝛿𝛿
, (21) 

where 𝑘𝑘1 =
�√𝑛𝑛+1 +2

𝑐𝑐𝑡𝑡
𝑐𝑐𝑡𝑡
�

1+2
𝑐𝑐𝑡𝑡
𝑐𝑐𝑡𝑡

 and we suppress the dependence of k1 on n, ct, and cd. Using k1, the 

expected cost per delivery (expression 18) can be written 

1
√3𝛿𝛿

�𝑐𝑐𝑡𝑡 �
𝑘𝑘1
𝑛𝑛+1

+ 1
𝑘𝑘1
�  + 2𝑐𝑐𝑑𝑑

𝑛𝑛
𝑛𝑛+1�𝑘𝑘1

2 + 1
𝑘𝑘12
� + 𝑛𝑛

𝑛𝑛+1
𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑡𝑡, (22) 

where the term in brackets depends only on n, ct, cd, and sd but not on the density of stops 𝛿𝛿.  

For truck-drone travel with 𝑛𝑛 ≤ 1, adding the round trip linehaul transportation to equation (18) 
gives a total cost per stop of  
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= 𝑐𝑐𝑡𝑡
2𝜌𝜌
𝑚𝑚𝑡𝑡𝑡𝑡

+ 𝑐𝑐𝑡𝑡 �
𝑤𝑤
3

1
𝑛𝑛+1

+ 1
2𝛿𝛿𝑤𝑤

�  + 2𝑐𝑐𝑑𝑑
𝑛𝑛

𝑛𝑛+1
��𝑤𝑤

3
�
2

+ � 1
𝛿𝛿𝑤𝑤
�
2

+ 𝑛𝑛
𝑛𝑛+1

𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑡𝑡. (23) 

The optimal swath width w* for this cost expression can be written 

𝑤𝑤∗ ≅
�√𝑛𝑛+1 +2

𝑐𝑐𝑡𝑡
𝑐𝑐𝑡𝑡
�

√2 +2
𝑐𝑐𝑡𝑡
𝑐𝑐𝑡𝑡

�3
𝛿𝛿

= 𝑘𝑘1𝑙𝑙�
3
𝛿𝛿
,  (24) 

where k1l is the parameter for determining the optimal swath width when linehaul distance is 
included and k1 is used when linehaul distance is not included. 

3.5 Truck Travel Time and Number of Stops per Route 

The expected travel time of a route can be calculated using the expected distance relations 
derived earlier. Let 𝑐𝑐𝑡𝑡′ be the reciprocal of the average truck speed while delivering, 𝑐𝑐𝑡𝑡𝑙𝑙′  be the 
reciprocal of the average truck linehaul speed, 𝑐𝑐𝑑𝑑′  be the reciprocal of the average drone speed, 𝑠𝑠𝑡𝑡′ 
be the average stop time per truck delivery at a customer, and 𝑠𝑠𝑑𝑑′  be the marginal stop time per 
drone delivery relative to the truck stop time per delivery. Thus, if 𝑠𝑠𝑡𝑡′ = 1 minute and the average 
drone stop time for a drone delivery is 0.6 minutes, then 𝑠𝑠𝑑𝑑′  = -0.4 minutes. With 𝑚𝑚𝑡𝑡𝑑𝑑 total truck 
and drone stops per route, the number of drone delivery stops per route is 𝑚𝑚𝑡𝑡𝑡𝑡×𝑛𝑛

𝑛𝑛+1
 and the number 

of truck delivery stops per route is 𝑚𝑚𝑡𝑡𝑡𝑡
𝑛𝑛+1

 . The expected travel time for a truck on a truck-drone 
route with m total deliveries is 

𝑚𝑚𝑡𝑡𝑑𝑑 × �𝑐𝑐𝑡𝑡′  �
1

𝑛𝑛+1
𝑤𝑤
3

+ 1
𝛿𝛿𝑤𝑤
� + 1

𝑛𝑛+1
𝑠𝑠𝑡𝑡′ − 𝑐𝑐𝑡𝑡𝑙𝑙′

1
2𝛿𝛿𝑤𝑤

� + 2𝜌𝜌𝑐𝑐𝑡𝑡𝑙𝑙′  . 

This expected time assumes that the truck does not need to wait for the drone (as in the 
illustrations that follow). With an available time for the route of T hours, the number of delivery 
stops for a truck-drone route is given by 

𝑚𝑚𝑡𝑡𝑑𝑑 = 𝑇𝑇−2𝜌𝜌𝑐𝑐𝑡𝑡𝑡𝑡
′   

𝑐𝑐𝑡𝑡′ �
1

𝑛𝑛+1 𝑤𝑤3+
1
𝛿𝛿𝑤𝑤�−𝑐𝑐𝑡𝑡𝑡𝑡

′ 1
2𝛿𝛿𝑤𝑤+ 1

𝑛𝑛+1 𝑠𝑠𝑡𝑡′
  or (25) 

𝑚𝑚𝑡𝑡𝑑𝑑 = 𝑇𝑇 
𝑐𝑐𝑡𝑡′ �

1
𝑛𝑛+1 𝑤𝑤3+

1
𝛿𝛿𝑤𝑤�+ 1

𝑛𝑛+1 𝑠𝑠𝑡𝑡′
 , (26) 

depending on whether linehaul travel is needed. The number of delivery stops for a truck-only 
route can be derived similarly as 

𝑚𝑚𝑡𝑡𝑡𝑡 = 𝑇𝑇−2𝜌𝜌𝑐𝑐𝑡𝑡𝑡𝑡
′   

𝑐𝑐𝑡𝑡′ � 
𝑤𝑤
3+

1
𝛿𝛿𝑤𝑤�−𝑐𝑐𝑡𝑡𝑡𝑡

′ 1
2𝛿𝛿𝑤𝑤+  𝑠𝑠𝑡𝑡′

  or (27) 
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𝑚𝑚𝑡𝑡𝑡𝑡 = 𝑇𝑇 
𝑐𝑐𝑡𝑡′ �

2
√3𝛿𝛿

�+  𝑠𝑠𝑡𝑡′
 . (28) 
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4. DRONE OPERATIONAL AND COST DATA 

Evaluation of potential benefits from truck-drone delivery systems using the expected cost 
formulae requires reasonable values of the relevant parameters, especially drone costs. 
Unfortunately, we cannot collect such data in the field because drone-based delivery systems are 
not currently in operation. Further, the firms experimenting with drone delivery have not 
published operational and performance data from an actual implementation, and any future 
deployment of drone delivery systems may well incur costs different than those of today’s 
drones. To further complicate matters, there is a wide range of data from academic, practitioner, 
and industry sources (in part due to the various types of drones envisioned).  

One of the best attempts to analyze drone system costs and operating parameters at a strategic 
level is by ARK Invest (Keeney 2015). ARK Invest suggested a large-scale implementation 
(based on Amazon.com) could serve 400 million deliveries per year in the US, which includes 
packages under 5 lbs and within 10 mi of a depot. The company considered system costs for 
drone delivery from fixed depots where each drone makes an average of 30 deliveries per day in 
two eight-hour shifts and each drone operator is responsible for 10 to 12 drones. They estimated 
annual capital costs for infrastructure, drones, and batteries and annual operating costs for labor 
(drone operators), data bandwidth, maintenance, and electricity. This resulted in a total annual 
cost of $350 million and a suggested price of $1 per delivery (assuming a 15% discount rate). 
With an average seven-mile (one-way) drone delivery distance, the $1 cost per drone delivery 
equates to about $0.07/mi.  

In this report, to explore a range of operating costs and the sensitivity of the model results to 
various operational parameter values, we consider 𝑛𝑛 = 1 to 8 drones per truck, drone operating 
costs per mile from 𝑐𝑐𝑑𝑑 = $0.01 to $0.625, and marginal drone stop costs from 𝑠𝑠𝑑𝑑 = -$0.20 to 
$0.10. We also vary the density of deliveries widely to explore the benefits of truck-drone 
delivery in different settings. All models employ a baseline setting of a service region of 𝑃𝑃= 
1,250 mi2, a time limit of 𝑇𝑇= 8 hours per route, a truck operating cost of 𝑐𝑐𝑡𝑡 = $1.25 per mile, and 
a truck stop cost of $0.40. We limit the truck capacity to a maximum of 500 delivery stops to 
reflect the size of delivery trucks currently in use. In all instances, we use a truck linehaul speed 
of 40 mi/h (𝑐𝑐𝑡𝑡𝑙𝑙′ =1/40), a truck delivery speed of 20 mi/h (𝑐𝑐𝑡𝑡′ = 1/20), and a stop time of 1 minute 
per delivery for the truck and for the drone (i.e., 𝑠𝑠𝑡𝑡′ = 1 minute and 𝑠𝑠𝑑𝑑′  = 0).  
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5. RESULTS 

For a particular problem instance (value of 𝛿𝛿, 𝑛𝑛, 𝑐𝑐𝑑𝑑, and  𝑠𝑠𝑑𝑑), we calculate the swath width (𝑤𝑤) 
and the number of truck and drone stops per route from the appropriate equation, limited to a 
maximum of 500 deliveries per route. The total expected costs per delivery are denoted 𝐸𝐸𝑡𝑡𝑡𝑡 and 
𝐸𝐸𝑡𝑡𝑑𝑑(𝑛𝑛) (𝑡𝑡𝑡𝑡 is for truck-only and 𝑡𝑡𝑠𝑠 is for truck-drone). The percent savings per delivery from 
truck-drone delivery relative to truck-only delivery is 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝐸𝐸𝑡𝑡𝑡𝑡−𝐸𝐸𝑡𝑡𝑡𝑡(𝑛𝑛) 
𝐸𝐸𝑡𝑡𝑡𝑡

. 

Positive values of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 indicate savings from truck-drone delivery relative to truck-only 
delivery, and negative values indicate that truck-only delivery has a lower expected cost. The 
following results highlight the potential benefits of truck-drone delivery and the impact of four 
key parameters of interest: the number of drones per truck 𝑛𝑛, the density of deliveries 𝛿𝛿, the 
drone operating cost per mile 𝑐𝑐𝑑𝑑, and the drone marginal stop cost  𝑠𝑠𝑑𝑑. 

5.1 Benefits from Multiple Drones per Truck 

To illustrate the benefits from using multiple drones per truck, Figure 6 shows 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 with one to 
eight drones as a function of the drone operating cost 𝑐𝑐𝑑𝑑, where the marginal drone stop cost is 
zero and the delivery density is 𝛿𝛿 = 10 per mi2.  

 
Figure 6. Percentage savings with one to eight drones with increasing drone operating cost 

for 𝜹𝜹 = 𝟏𝟏𝟏𝟏 and 𝒔𝒔𝒅𝒅 = 𝟏𝟏 
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The three dashed straight lines show the savings for a given number of drones per truck: 𝑛𝑛 = 1, 
2, or 5. The solid curve shows the maximum savings from allowing the number of drones per 
truck to vary with the drone operating cost (i.e., the upper envelope of the savings with one to 
eight drones per truck). With low drone operating costs (𝑐𝑐𝑑𝑑 < 0.12), eight drones per truck 
provides the largest savings (with a maximum of nearly 40%). Fewer drones per truck are used 
as 𝑐𝑐𝑑𝑑 increases, and there is no savings for 𝑐𝑐𝑑𝑑 > 0.81. With one drone per truck, the maximum 
savings (for a very small drone operating cost) is about 21%, and there are marginally decreasing 
additional savings from using more drones per truck. The maximum savings is 28.3% with two 
drones per truck, 32.6% with three drones per truck, 34.9% with four drones per truck, and 
39.8% with eight drones per truck. The solid line in Figure 7 shows substantial benefits from 
multiple drones per truck when 𝑐𝑐𝑑𝑑 < 0.40 (about one-third of the truck operating cost per mile), 
which seem to be very reasonable values for drone operating cost.  

 
Figure 7. Swath width and number of drones per trucks with one to eight drones with 

increasing drone operating cost for 𝜹𝜹 = 𝟏𝟏𝟏𝟏 and 𝒔𝒔𝒅𝒅 = 𝟏𝟏 

Figure 7 is a companion to Figure 6 that shows how the swath width and number of drones per 
truck decrease as the drone operating cost rises. This illustrates that as drones become more 
expensive to operate, fewer drones per truck should be used and the swath width should decrease 
to reduce travel in the direction perpendicular to the general direction of travel along the swath. 
Table 1 shows for selected values of 𝑐𝑐𝑑𝑑 the percentage savings per delivery and the number of 
drones per truck that provide the largest savings when 𝑠𝑠𝑑𝑑 = 0 (as in Figures 6 and 7) and  
𝑠𝑠𝑑𝑑 = −0.2 (drone delivery stops cost $0.20 less than truck delivery stops).  
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Table 1. Percentage savings (𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷) and number of drones per truck (𝒏𝒏) that produce the 
lowest cost per stop with increasing drone operating cost for 𝜹𝜹 = 𝟏𝟏𝟏𝟏 

 𝒔𝒔𝒅𝒅 = 𝟏𝟏 𝒔𝒔𝒅𝒅 = −𝟏𝟏.𝟐𝟐 
𝒄𝒄𝒅𝒅 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝒏𝒏 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝒏𝒏 

0.0 39.8% 8 56.7% 8 
0.1 30.0% 8 47.0% 8 
0.14 26.3% 7 43.2% 8 
0.16 24.6% 6 41.3% 8 
0.18 23.1% 5 39.5% 7 
0.2 21.8% 4 37.8% 6 
0.24 19.3% 3 34.7% 5 
0.3 16.1% 3 30.7% 4 
0.4 11.3% 2 25.1% 3 
0.5 7.9% 1 19.9% 2 
0.6 5.3% 1 15.8% 2 
0.7 2.8% 1 12.3% 1 
0.8 0.3% 1 9.8% 1 
0.9 -2.3% 0 7.3% 1 
 

This table shows how the greater savings in the drone stop cost when 𝑠𝑠𝑑𝑑 = −0.2 leads to larger 
overall savings with a maximum of 56.7% (versus 39.8% when 𝑠𝑠𝑑𝑑 = 0) and greater use of 
multiple drones per truck even with relatively large drone operating costs. Similar results to 
Figures 5 and 6 and Table 1 are produced using other delivery densities, because higher drone 
operating costs per mile lead to fewer drones per truck and lower savings per stop.  

5.2 Impact of Density of Deliveries  

This section explores the impact of the density of deliveries in a region. As a baseline, we 
consider 𝑠𝑠𝑑𝑑 = −0.1(the drone stop cost is 10 cents 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 than the truck stop cost). Figure 8 
shows how truck-drone delivery savings per delivery (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) decrease at a decreasing rate as 
customer density increases for selected values of the drone operating cost.  
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Figure 8. Percentage savings with one to eight drones per truck with increasing delivery 

density for 𝒔𝒔𝒅𝒅 = −𝟏𝟏.𝟏𝟏 

Each solid curve for the different drone operating costs allows the use of up to eight drones per 
truck whichever number provides the lowest cost. Also, the two dashed curves for one and two 
drones per truck when 𝑐𝑐𝑑𝑑 = 0.1 highlight the benefits of allowing multiple drones per truck. In 
this figure, the leftmost density values can be viewed as sparsely populated rural areas (𝛿𝛿 = 0.01 
is one delivery per 100 mi2), with the central and right-most values more typical of suburban 
regions in the US. (The average housing unit density in the US is 32.8 per mi2 overall and 128.7 
per mi2 in metropolitan areas [Census-Charts.com 2017].) With very low drone operating costs 
(𝑐𝑐𝑑𝑑 = 0.01; the upper curve in Figure 7), truck-drone delivery provides savings of up to 63.2% 
per delivery for very low densities of deliveries. Savings decrease with the drone operating costs, 
but even for densities of 500 per mi2, the savings range from 20% to 27.5% for 0.01 ≤ 𝑐𝑐𝑑𝑑 ≤ 0.3. 
For the solid lines in this figure, the number of drones per truck is the value that provides the 
lowest cost (and thus the greatest 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 values). This is always eight drones per truck for 
𝑐𝑐𝑑𝑑 = 0.01 and 𝑐𝑐𝑑𝑑 = 0.1 , but it varies from two to seven drones per truck for 𝑐𝑐𝑑𝑑 = 0.3 depending 
on the delivery density. Limiting the number of drones per truck reduces 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. When 𝑐𝑐𝑑𝑑 = 0.1, 
allowing only one drone per truck produces savings per delivery of only 22.8% for 𝛿𝛿 = 0.01 and 
16.1% for 𝛿𝛿 = 500 versus 43.6% and 25.3%, respectively, when allowing up to eight drones per 
truck.  

The large percentage savings per delivery (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) with low delivery densities suggest a high 
value from using drones for delivery in rural areas; however, the low density of deliveries in 
rural areas means that these large savings apply to relatively few deliveries. The savings per 
square mile (𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆) combines 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 with the density of deliveries and the expected cost per 
delivery (which varies with delivery density): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝛿𝛿 × 𝐸𝐸𝑡𝑡𝑡𝑡 = [𝐸𝐸𝑡𝑡𝑡𝑡 − 𝐸𝐸𝑡𝑡𝑑𝑑(𝑛𝑛)] × 𝛿𝛿. (29) 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 is the spatial density of total delivery savings, and it provides a very different perspective 
than the savings per delivery (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). Figure 9 provides 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 for the same situations depicted 
in Figure 8 and shows how the intensity of savings increases with the delivery density.  

 
Figure 9. Savings per square mile with one to eight drones per truck with increasing 

delivery density for 𝒔𝒔𝒅𝒅 = −𝟏𝟏.𝟏𝟏 

This figure better shows the important and growing benefits from using multiple drones per truck 
with large delivery densities. For example, when 𝛿𝛿 = 500 and 𝑐𝑐𝑑𝑑 = 0.1, 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 is $45.9/mi2 with 
one drone per truck, $57.1/mi2 with two drones per truck and $72.1/mi2 with eight drones per 
truck. 

Even with expensive drones where 𝑐𝑐𝑑𝑑 = 0.625 (half the cost per mile for trucks), when 𝑠𝑠𝑑𝑑 =
−0.1, 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 is $35.8/mi2 for 𝛿𝛿 = 500 and $15.4/mi2 for 𝛿𝛿 = 200, though it is only $0.42/mi2 for 
𝛿𝛿 = 5. With this large drone operating cost and even lower delivery densities, 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 becomes 
negative because truck-only delivery provides lower costs due to the differences in total distance 
traveled for truck-drone and truck-only delivery and the interplay between linehaul costs and the 
number of deliveries per route. Because hybrid truck-drone routes require longer total travel 
distance for the truck and drone together compared to truck-only routes, though less distance for 
the truck travel, as shown in Figure 5, a high drone operating cost per mile (relative to the truck 
cost per mile) causes truck-drone delivery to have higher total costs than truck-only delivery. 
However, with higher delivery densities, there are more deliveries per route and linehaul travel 
becomes an important component of the total cost per delivery. This has a greater impact for 
truck-only travel because those routes have fewer deliveries than truck-drone routes.  

We limit our presentation of results to a maximum of 𝛿𝛿 = 500, though the models apply for 
even greater densities. However, a very high delivery density is likely to occur in a dense urban 
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region where practical considerations reduce the appropriateness of the model for travel and for 
delivery.  

While Figures 8 and 9 are constructed for a marginal drone stop cost of 𝑠𝑠𝑑𝑑 = −0.1, similar 
results for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 with 𝑠𝑠𝑑𝑑 = 0 are shown in Figures 10 and 11. 

 
Figure 10. Percentage savings per delivery for one to eight drones per truck with increasing 

delivery density for 𝒔𝒔𝒅𝒅 = 𝟏𝟏 

 
Figure 11. Savings per square mile with one to eight drones per truck with increasing 

delivery density for 𝒔𝒔𝒅𝒅 = 𝟏𝟏 
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With very low delivery densities, the results for 𝑠𝑠𝑑𝑑 = 0 are very similar to those for 𝑠𝑠𝑑𝑑 = −0.1 
because there are so few deliveries that the stop cost 𝑠𝑠𝑑𝑑 is a small component of total costs. 
However, with increasing delivery density, the stop cost becomes important and the stop cost 
savings with 𝑠𝑠𝑑𝑑 = −0.1 makes drone use more attractive. For example, in Figure 8 with 𝑠𝑠𝑑𝑑 =
−0.1 and 𝛿𝛿 = 500, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ranges from 20.0% to 27.5% for 0.01 ≤ 𝑐𝑐𝑑𝑑 ≤ 0.3, while in Figure 10 
with 𝑠𝑠𝑑𝑑 = 0, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ranges from 6.1% to 12.0%. Even one drone per truck provides much greater 
savings when 𝑠𝑠𝑑𝑑 = −0.1, because the savings with 𝛿𝛿 = 500 and 𝑐𝑐𝑑𝑑 = 0.1 are 16.1% versus 
7.3% for 𝑠𝑠𝑑𝑑 = 0. The benefits from the reduction in marginal drone stop cost are also clear from 
comparing Figures 9 and 11, where the savings intensity is much larger when 𝑠𝑠𝑑𝑑 =
−0.1. Further, the relative benefits of 𝑠𝑠𝑑𝑑 = −0.1 (Figure 9) versus 𝑠𝑠𝑑𝑑 = 0 (Figure 11) increase 
with the delivery density. The results when 𝑠𝑠𝑑𝑑 = 0 reflect the use of eight drones per truck for 
low values of drone operating cost (𝑐𝑐𝑑𝑑 ≤ 0.1) but only two drones per truck for 𝑐𝑐𝑑𝑑 = 0.3, unlike 
the results when 𝑠𝑠𝑑𝑑 = −0.1, where the number of drones per truck increases with the delivery 
density. Such an increase does not happen with 𝑠𝑠𝑑𝑑 = 0 because drone use is not as attractive as 
when there are drone stop cost savings.  

5.3 Impact of Marginal Drone Delivery Cost 

To illustrate the impact of the marginal drone delivery cost on the savings from truck-drone 
delivery, Figure 12 shows 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 with up to eight drones per truck for 𝑐𝑐𝑑𝑑 = 0.1 and four selected 
values of the drone marginal delivery cost: 𝑠𝑠𝑑𝑑 = -0.2, -0.1, 0, and 0.1.  

 
Figure 12. Percentage savings per delivery with up to eight drones per truck with 

increasing delivery density for 𝒄𝒄𝒅𝒅 = 𝟏𝟏.𝟏𝟏 

With a large drone marginal stop cost savings of 𝑠𝑠𝑑𝑑 = −0.2, truck-drone delivery provides large 
savings per delivery (about 40% to 50%) that are relatively insensitive to the delivery density 
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beyond the smallest densities. Conversely, when the drone stops are more expensive than truck 
stops (𝑠𝑠𝑑𝑑 = 0.1), the benefits per delivery of truck-drone delivery are very sensitive to the 
delivery density and decrease dramatically, even becoming negative (i.e., truck-only delivery is 
better) for densities larger than about 300 per square mile. Table 2 summarizes 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 results 
with one, two, and up to eight drones per truck for 𝑐𝑐𝑑𝑑 = 0.1 and 𝑐𝑐𝑑𝑑 = 0.01 with four levels of 
marginal drone stop cost in both “rural” regions (i.e., 𝛿𝛿 ≤ 10 /mi2) and “suburban” regions (i.e., 
30 ≤ 𝛿𝛿 ≤ 500 /mi2).  

Table 2. Percentage savings (𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷) and number of drones per truck (𝒏𝒏) with different 
drone marginal stop costs for 𝒄𝒄𝒅𝒅 = 𝟏𝟏.𝟏𝟏 

  𝒄𝒄𝒅𝒅 = 𝟏𝟏.𝟏𝟏 𝒄𝒄𝒅𝒅 = 𝟏𝟏.𝟏𝟏𝟏𝟏 

𝒏𝒏 𝒔𝒔𝒅𝒅 Rural 𝜹𝜹 ≤ 𝟏𝟏𝟏𝟏 
Suburban 

𝜹𝜹 = 𝟑𝟑𝟏𝟏 − 𝟓𝟓𝟏𝟏𝟏𝟏 Rural 𝜹𝜹 ≤ 𝟏𝟏𝟏𝟏 
Suburban 

𝜹𝜹 = 𝟑𝟑𝟏𝟏 − 𝟓𝟓𝟏𝟏𝟏𝟏 

1 

-0.2 23.1 – 26.8% 24.8 – 27.5% 28.6 – 29.2% 25.4 – 29.3% 
-0.1 22.0 – 22.8% 16.1 – 21.4% 24.4 – 28.2% 16.7 – 23.2% 

0 17.2 – 22.4% 7.3 – 15.2% 19.7 – 27.9% 7.9 – 17.0% 
0.1 12.5 – 22.1% -1.5 – 9.1% 14.9 – 27.5% -0.8 – 10.9% 

2 

-0.2 32.2 – 36.6% 31.7 – 35.5% 40.6 – 41.0% 32.7 – 38.4% 
-0.1 30.3 – 31.8% 20.0 – 27.3% 34.2 – 40.6% 21.0 – 30.2% 

0 23.9 – 31.3% 8.3 – 19.1% 27.9 – 40.1% 9.4 – 22.1% 
0.1 17.6 – 30.9% -3.3 – 10.9% 21.5 – 39.7% -2.3 – 13.9% 

1-8 

-0.2 44.2 – 47.0% 40.8 – 44.8% 55.7 – 63.8% 43.1 – 53.4% 
-0.1 38.5 – 43.6% 25.3 – 33.9% 47.3 – 63.2% 27.5 – 40.4% 

0 30.0 – 43.0% 9.7 – 23.0% 38.8 – 62.6% 12.0 – 29.5% 
0.1 21.6 – 42.4% -1.5 – 12.1% 30.0 – 62.0% -0.8 – 18.6% 

 

The first two columns provide the number of drones per truck and the marginal drone stop cost. 
The next four columns provide the range of savings (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) in the rural and suburban regions for 
the two values of the drone operating cost per mile. This table shows greater savings as the drone 
marginal stop cost decreases (as expected) and the benefits of using multiple drones per truck. 
With a positive marginal drone stop cost of 𝑠𝑠𝑑𝑑 = 0.1 (drone stop cost is 10 cents more than the 
truck stop cost), drones are naturally less attractive and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 may become negative (i.e., truck-
only delivery is preferred) with high delivery densities. However, Table 2 shows that in rural 
areas the savings from hybrid truck-drone delivery are positive even with a positive marginal 
drone stop cost of 𝑠𝑠𝑑𝑑 = 0.1, showing that truck-drone delivery is preferred over truck-only 
delivery at these low densities. 

Figure 13 is a companion to Figure 12 that presents the 𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 for the situations depicted in 
Figure 12.  
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Figure 13. Savings per square mile with one to eight drones per truck with increasing 

delivery density for 𝒄𝒄𝒅𝒅 = 𝟏𝟏.𝟏𝟏 

Given the relatively flat curves in Figure 12 for moderately large delivery densities, Figure 13 
shows nearly linear curves reflecting the greater benefits in regions of higher density. The strong 
advantages of reduced marginal stop costs are more evident in the growing separation of the 
curves in Figure 13 versus the nearly parallel lines in Figure 12. Figure 13 also shows the low 
savings (or small losses) from truck-drone delivery when drone deliveries are more expensive 
than truck deliveries.  

Collectively, the results highlight that truck-drone delivery appears to have strong potential to 
reduce delivery costs. Regions of low delivery density often provide the greatest percentage 
savings per stop, but these savings apply to relatively few deliveries. The net savings per square 
mile generally increase with the delivery density, so regions of greater delivery density, which 
may have a lower savings per delivery, actually often generate much greater total savings.  
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6. CONCLUSIONS 

This research derived continuous approximation models for travel cost and travel time of hybrid 
truck-drone delivery and truck-only delivery to facilitate a strategic analysis of the design of 
drone delivery systems. The mathematical expressions in the models are optimized to determine 
important drone delivery system design parameters, including the optimal number of truck and 
drone deliveries per route, the optimal number of drones per truck, and whether truck-only or 
hybrid truck-drone travel provides a lower total cost. Travel time constraints and vehicle capacity 
limits are incorporated in the models to increase their realism. The CA models allow us to assess 
the best use of truck-drone delivery, the appropriate mix of drones and trucks, and the expected 
economic performance of different delivery systems. Comparison of the expected delivery costs 
from the CA models for different delivery systems helps identify when and where implementing 
truck-drone delivery is likely to be beneficial. 

The results highlight some key tradeoffs in the use of the trucks and drones and their dependence 
on relative operating characteristics, costs, and delivery densities. Key findings are as follows: 

• Truck-drone hybrid delivery has the potential to provide substantial cost savings, especially 
in suburban areas.  

• Incorporating multiple drones per truck offers important but marginally decreasing savings 
that can be large.  

• The benefits from truck-drone delivery depend strongly on the relative operating costs per 
mile for trucks and drones, the relative stop costs for trucks and drones, and the spatial 
density of customers. 

• Measures of savings per delivery and savings intensity per square mile provide 
complementary perspectives that highlight the conditions and regions likely to generate the 
greatest savings. 

• The importance of drone operating costs is highlighted in the results, and it is likely these 
costs will continue to fall as drone technology advances. However, more detailed analysis to 
identify real values of cost per mile and per stop would be very useful. The continuous 
approximation models provide valuable managerial insights by analyzing a general version 
of the delivery problem, and a wide range of different settings can be modeled and analyzed 
by varying the delivery (demand) density and the operating characteristics for drones and 
trucks.
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